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ABSTRACT

We consider nonlinear constrained optimization problems whose objective

and constraint functions are sufficiently smooth. No convexity is assumed.

Our basic tools are from differential topology. We show that these

problems can be reduced to the study of minimizing a Morse function on a

manifold with boundary and we give the geometrical meaning to the first order

conditions, the second order sufficiency conditions, and strict complementary

slackness condition.

Our main concerns are the second order sufficiency conditions,

sensitivity analysis, generic properties of smooth nonlinear programs, global

duality, local uniquenss, and strict complementary slackness.
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SIGNIFICANCE AND EXPLANATION

Nonlinear optimization problems arise in economic theory, in management

science and in other fields. In the analysis of global optima of such

problems, we quite often assume the functions concerned are convex. But in

general those functions cannot be expected to be convex.

In this paper it is assumed that those functions are not necessarily

convex but &E.ficiently smooth. We show that almost always nonlinear

optimization problems have a unique global solution if global solutions exist,

and we also show that with slightly perturbed data of a special type, those

global optima almost always change smoothly in a certain problem.

j

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the author of this report.
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MORSE PROGRAMS: A TOPOLOGICAL APPROACH TO

SMOOTH CONSTRAINED OPTIMIZATION

Okitsugu Fujiwara

1. Introduction

The nonlinear programming problem

(Q): minimize{f(x) subject to g(x) s b}

where x E R , b c Rm  is called a convex program if f and g are convex.

Convex programs enjoy a number of desirable global properties (e.g.

Mangasarian [12], Rockafellar [131) which do not hold in nonconvex programs.

But these properties are true locally under certain constraint qualifications

(e.g. Fiacco and McCormick [6], Avriel [2]). An important question is: do

these constraint qualifications hold for almost all nonlinear programs? This

question was recently answered affirmatively by Spingarn and Rockafellar [17)

who showed, assuming differentiability of the objective and constraint

functions, at any local minimum point x of (Q(u,v)), where

T
(Q(u,v)): minimize{f(x) - u x subject to g(x) < b + v},

that the Jacobian matrix of g at x has full rank; the strict

complementary slackness condition; and the second order sufficiency conditions

. n m
hold at x , for almost every (u,v) in R X R

However their clever argument is analytic and devoid of geometrical

intuition. Spingarn ([14], [15], (16]) has provided a geometrical

interpretation of his results using his notion "cyrtohedra", a generalization

of manifolds with corners.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
is the revised version of Cowles Foundation Discussion Paper No. 539 (Yale
University) supported in part by National Science Foundation Grants ENG-78-

25182 and SOC-77-03277.
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The purpose of this paper is also to give a geometrical answer to the

question: do the strong second order sufficiency conditions hold at any local

minimum point for almost all nonlinear programs? Our idea is to reduce the

nonlinear programming problem to a finite family of "well-behaved" nonlinear

programs by perturbing the objective function in a linear fashion and

perturbing the right hand side of the constraints by adding a constant. Each

of the "well-behaved" nonlinear programs will consist of minimizing a Morse

function on a manifold with boundary, where the Morse function has no critical

points on the boundary. The constraint set being a manifold with boundary is

the geometrical meaning of the full rank condition of the Jacobian; the

objective function being a Morse function is the geometrical meaning of the

second order sufficiency conditions; the lack of critical points on the

boundary is the geometrical meaning of strict complementary slackness

condition. Moreover, our perturbation gives us a unique global solution.

We follow a classical tradition of first studying an equality constrained

program, in which the feasible region is a manifold without boundary; and then

reducing an inequality constrained program to a finite family of constrained

programs whose constraints consist of a finite set of equalities and one

inequality (through the device of active or binding constraints), where we

decompose the feasible region into a finite number of manifolds with boundary.

Our main concerns are the second order sufficiency conditions (Theorems

A, F); sensitivity analysis (Theorems B, E); generic properties of smooth

nonlinear programs (Theorems C, H); strict complementary slackness condition

(Theorem G), and local uniqueness (Theorem E).

-2-
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2. Basic Definitions and Notation

A property that holds except on a subset of Rn whose Lebesgue measure

nis zero is said to hold at almost every u E R . The complement of a measure

zero set in Rn is said to have full measure in Rn.

The Jacobian matrix and the Hessian matrix of f at x are denoted by

Df(x) and D 2f(x) respectively.

Let f : M + Rm  be a C7 map from a k-dimensional C manifold M

with boundary aM in Rn , Let (0,U) be a local parametrization of M

at x such that x - O(u), u C U c Hk {x C R xk ) 0}. The tangent space

k nTxM of M at x is defined to be the image of DO(u) : R + R . A point

x c M is a regular point of f if D(fo)(u) : Rk + R7 is surjective,

otherwise x is a critical point of f. A critical point x of

f : M + RI  is nondegenerate if the k x k matrix D 2(f)(u) is

nonsingular. It is easily shown that the above definitions do not depend on

the choice of local parametrization. A point y C Rm is a regular value of

r, denoted by f A y, if every x e f- 1(y) is a regular point of f,

otherwise y is a critical value of f. f : M + R is a Morse function if

all critical points ot f are nondegenerate.

Let f : M + N be a CY  map, A c N be a C submanifold of N. f

is transversal to A, denoted by f A A, if for every x C f- 1(A),

Image Df(x) + Tf(x)A = Tf(x)N holds, where Df(x) : T xM + T f(x)N is the

derivative of f. Two submanifolds A, B of M are transversal denoted by

A + B, if i A B where i A + M is the inclusion map. f is an ininersion

if for every x E M, Df(x) T xM + T f(x)N is injective. f is a submersion

if Df(x) is surjective for every x C M. f is proer if the preimage of

every compact set in N is rompact in M. An immersion that is injective and

proper is called an embedding.

-3-
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We refer the interested reader to Guillemin and Pollack [8] for an

introduction to the concepts of differential topology that will be used in

this paper. Those theorems of elementary differential topology which are used

in the body of this paper are stated in the appendix. The proofs of those

theorems can be found in Gillemin/Pollack [8] and Hirsch [10].

-4-
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3. Equality Constraints: Properties of Morse Programs

Throughout this section we consider a program

(P): minimize {f(x) subject to g(x) = b}

and a perturbation of (P)

(P(u,v)): minimize {f(x) - uTx subject to g(x) = b + v}

Rn R1' n mn m

where f : R g : R Rm; u e R , v C Rm; n ) m, and we assume f

and g are of class C2 .

Definition. A program (P) is a Morse program if g h b and f is a Morse

function on g 1 (b).

-1
Definition. A point x e g (b) is a critical point of (P) if x is a

critical point of f on g-l(b).

It is easily verified that nondegenerate critical points are isolated

(cf. Guillemin/Pollack [8]). Hence each critical point of a Morse program

(P) is isolated. By the Morse Lemma (Appendix (1)) the local behavior of a

function at a nondegenerate critical point is completely determined, i.e., at

any critical point of a Morse program (P), f has a strict local minimum, a

strict local maximum, or a saddle point.

If g + b and g E C then g-1(b) is (n-m)-dimensional C

submanifold of Rn (Appendix (5)).

A Morse program has three distinguishing properties:

(a) The second order sufficiency conditions hold at every local

minimum point of a Morse program (P) (Theorem A).

(b) If x is a critical point of a Morse program (P), then the

associated Lagrange multiplier A exists and

-5-
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D2f(x) + x XiD2 g (x) Dg(x) T

the matrix [=1 is non-
Dg(x) 0

singular (Theorem B).

(c) Generically (P) can be considered a Morse program, namely

nm(P(u,v)) is a Morse program for almost every (u,v) C R x Rm

(Theorem C).

We will discuss the existence of the Lagrange multiplier and its

uniqueness geometrically, without using Parkas lemma.

Suppose g 1 b and g C C Y (y ) 2). Then M = g-1(b) is (n-m)-

Y ndimensional C submanifold of R and at each point x E M Dg(x) has full

rank, hence Rn = Ker Dg(x) * Im Dg(x)T and TxM = Ker Dg(x) (because

differentiating go R b on U, where (0,U) is a local parametrization of

M at x = O(p), we obtain TM = Im Do(p) c Ker Dg(x). Comparing dimensions

of both sides we have TxM = Ker Dg(x)). A point x e M is a critical point

of f on M iff Df(x)T I TxM, because D(ff)(p)Rn- m = Df(x)Do(p)Rn

Df(x)TxM = {0} iff Df(x)T J TxM. Then Df(x)T C Im Dg(x)
T

Hence we have
1) -1

Lemma 1.1) If g h b, then x E g (b) has a Lagrange multiplier iff x is

a critical point of f on g-1 (b). Moreover the Lagrange multiplier is

uniquely determined.

The next lemma gives a representation of the Hessian matrix of f at

-1
x E g (b), in terms of the seond derivative of the Lagrangian at x.

1)

This fact has been pointed out previously by Tanabe ((18] Proposition 1).

-6-
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Lemma 2.1) Let g b, x be a critical point of M = g- 1 (b) with the

m

2 m- 2
associated Lagrange multiplier X, L(x) = D f(x) + D XDgi(x) and ( ,U)

be a local parametrization of M at x such that x = p(p) for

p C U c Rn-m . Then D 2(f )(u) = DO(p)T L(x)DO(p).

Proof.2 ) By the chain rule we have

2 n af(x) D2j

(3.1) D 2(f )(p) = DO(p)T D 2f(x)DO(p) + n L xD (P)"
j=1 j

m m
Differentiating )i(gi4) E X.b. on U, we have

Si=1 i=I

I __

~m li2m m agi(x) D j

(3.2) DO(p)T( X .D2 gi(x))DO(p) + I i X. x) (P) = 0 •
i=1 ' 1 j=1 Li=1  I J

Adding (3.2) to (3.1) and taking account Df(x) + XiDgi(x) = 0, we

obtain D 2(f )(p) = D(p)T L(x)DO(p).

Q.E.D.

For s C T M, L(x)s is in Rn but not necessarily in TM. To obtain ax

linear homomorphism on TxM, we project L(x)s orthogonally onto TXM. We

denote this linear homomorphism on TM by LM(x), which we call the induced

homomorphism of L(x) on TM (Luenberger (11], 10.4). Let ( ,U) be a

n-rn
local parametrization of M at x such that x = O(p), p c U c R We can

choose (0,U) so that the column vectors of DP(p) are orthonormal in Rn.

Then it is easily shown that the matrix representation of LM(x) with respect

1)

This fact has been pointed out previously by Tanabe ((19] Lemma 5.4).

2)
The idea for this proof was first given by Luenberger [11], 10.3.
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to the column vectors of D4(p), which is an orthonormal basis of TxM, is

D (p)T L(x)D(p) (Luenberger [111, 10.4). Hence by Lemma 2 we obtain

Lemma 3. Let g ,h b and let x be a critcal point of f on M = g-1 (b).

Then

x is nondegenerate iff LM(x) is an isomorphiam

Note that if x is nondegenerate, then L(x)ITxM is 1 - 1 since

L (x)D4(p) is 1 - 1, and we have

T
(3.3) L(x)T M N Ker D4(p) = {o}

xT

If, on the other hand, L(x)T M n Ker DP(p)T + (01, thenx

dimtL(x)T M e Ker D (p) T  ) 1. Hence we havex

dim Im(Df(p)T L(x)D(p)} = dim Df(p)T L(x)T M
x

= dim L(x)T M - dim{L(x)T M 1 Ker De(p) 
T

x x

<n-m

which contradicts the nondegeneracy of x.

Lemma 3 shows that a Morse function, whose critical points are all

nondegenerate, is an appropriate concept for the analysis of the second order

optimality conditions. Summarizing the above argument, we obtain the first

property of a Morse program.

Theorem A. Let (P) be a Morse program and x be a critical point of

(P). Then we have

(a) Dg(x) has full rank

(b) there exists a unique : R m such that Df(x)T + Dg(x) = 0

(c) L(x) D D2 f(x) + m D2gi(x) induces an isomorphism on T M

i= g

where M = g-1(b).



(d) on TxM, L(x) is positive definite iff x is a local minimum;

negative definite iff x is a local maximum; indefinite iff

x is a saddle point.

Proof. (a), (b), and (c) follow from, respectively, g ; b, Lemma 1, and

Lemma 3. (d): positive (negative) definite local minimum (maximum) is

obvious. If x is a local minimum (maximum), then L(x) is positive

(negative) semidefinite on TxM. However, since sT L(x)s = sTLM(x)s or

s E T M, by Lemma 3 L(x) must be positive (negative) definite on TxM.x

The saddle point case is an immediate consequence of the preceding argument.

Q.E.D.
m

Now let us vary the right hand side b c R and consider a critical

point x of (P) as a function of b, denoted by x(b). A sufficient

condition that x(.) is a C1 function of b is the nonsingularity of the

matrix

(3.4) (x) Dg(x) T

(Dg(x) 0 /

(this follows from the implicit function theorem).

n m n m
Consider the function Fb : R x R m R x R defined by Fb(XIA) =

(Df(x)T + Dg(x) T, g(x) - b). Then the nonsingularity of (3.4) for every

critical point x and its associated Lagrange multiplier X, is equivalent

to Fb A 0, which is equivalent to f being a Morse function on M - -1(b);

namely we have

Theorem B. Let g A b. Then

Fb A 0 iff f is a Morse function on M g 1 (b)

-9-



Proof.

Let (0,U) be a local parametrization of M at x such that x 0(p)

n-rnfor p C U c R

(If) Let (x,X) c Fb1(0), then x is a critical point of f on M (Lenma

1) and x is nondegenerate because f is a Morse function on M. Suppose

LW Dg~x T) L x) s + Dg(x) Tt
(x= . Then s e Ker Dg(x) = T M

Dg(x) Dg(x)s

and L(x)s = -Dg(x) t e Im Dg(x)T . Note that Im Dg(x)T = Ker D (p)

Because we have Im Dg(x)T = (Ker Dg(x)) (orthogonal complement of Ker Dg(x)

in Rn), Ker DO(p)T = (Im Df(p)) , and Ker Dg(x) = T xM = Im Df(p). Hence

L(x)s e L(x) T M n Ker DO(p) so by (3.3) L(x)s = 0. Since L(x) is

1 - 1 on TxM, this implies s = 0. Hence t = 0 since Dg(x)T is 1 - 1.

Therefore, we obtain Ker DF (xA) = {0} for any (x,X) £ F 1(0). Hence
b b

Fb 1 0.

(Only if)

Let x be a critical point of f on M. Then there exists X C Rm

such that Fb (x,X) = 0 by Lemma 1. Suppose D4(p) TL(x)D(p)r = 0 for some

n-rnT T
r C Rn- m . Let s = D4(p)r, then L(x)s £ Ker Df(p) = Im Dg(x) hence

L(x)s = Dg(x)Tt for some t £ Rm . Then

IL(x) Dg(x) T st L(x)s - Dq(x) Tt 0 easeseImDPI I =I = because s & In D#(p) =

Dg(x) 0 / tDg(x) s

TxM = Ker Dg(x). Hence s = 0 and r = 0 because DFb (xA) is nonsingular

and DO(p) is I - 1. Therefore Df(p) L(x)DO(p) is 1 - 1, hence

nonsingular, and by Lemma 3 x is rondegenerate.

Q.E.D.

-10-



The third property of Morse programs is genericity. In general (P) is

not necessarily a Morse program, but we have,

2 n-m+1
Theorem C) If f C and g C C , then for almost every fixed

v £ Rm , (p(u,v)) is a Morse program having at most one global solution for

n
almost every u e R

Proof. By Sard's Theorem (Appendix (2)) if g R n  R is of class Cn- nr
1

m2 n
then g A b+v for almost every v E Rm . For a C manifold X c R and a

C2 map h : X + R1 , h(x) - uTx is a Morse function for almost every u C Rn

(Appendix (6)). Therefore for v C Rm such that g A b+v, f(x) - uTx is a

Morse function on g- (b+v) for almost every u e R n . By Araujo and Mas-

Colell (U1], Theorem 1),2) we have

m n
Fix any v E R , then for almost every u c R

(P(u,v)) has at most one global solution.

Q.E.D.

1)
It can be shown that

If f C C2 and g £ Cn-m + 1, then for almost every

(u,v) e Rn n Rm, (P(u,v)) is a Morse program.

(See the remark previous to Theorem E in section 4.)
2)

Truman Bewley suggested the use of the Araujo/Mas-Colell theorem. For our
application, their theorem can be stated "Let X be a subset of Rn,

X R be continuous, and D : X x Rn---R I be defined by 4'(;.,u) =

(X) - uTx for x F X, u C R. Then the function (. ,u) : X R 1 has at

most one minimizer for almost every u c Rn." For our application for Theorem
C, let X = g-(b+v) and 4(x,u) f(x) - uTx.

-11-



4. Equality Constraints: Global Properties of Proper Morse Programs

Rn Rm
A mapping g : + R is called proper if the preimage of every compact

set in Rm is compact in Rn. It is easily shown that g is proper if and

only if

{X I Rn
, IXkH + g(X )0 +

kk k

where U-11 is the Euclidean norm.

Definition. (Brown, Heal and Westhoff [3])

A program (P) is called proper if g is proper.

In this section we consider some global properties of proper Morse

programs - global duality (Theorem D) and local uniqueness (Proposition 6,

Theorem E).

A proper program has at least one global solution since g 1 (b) is

compact, hence by Araujo/Mas-Colell [1] if (P) is proper (P(u,O)) has a

unique global solution for almost every u E Rn . We will consider a family of

parametrized programs

(P(y)): minimize ff(x) subject to g(x) = yJ
n

xeR

and its global optimum value function

w(y) : = minimumff(x) subject to g(x) = y}

We also consider a program

(PK): minimize {f(x) subject to g(x) b)
xCK

-12-



and its dual

(D): maximize ()
XeRm

where

M () = minimum {f(x) + T (g(x) - b) + - Ug(x) - b 2 }

xEK 2

K is a compact set of Rn, and a ) 0.

Since K is compact, there exists a global minimizer of 00(A) for any

XRm and 0)O.

Hestenes showed

Theorem ((9] Chapter 5, Theorem 4.4)
*

If x is a unique global minimum of (PK) such that

*T 2 gx foDom 2 g *) is
Df(x + Dg(x) 0 for some cR and D f(x ) + I AiD gi(x __

1

positive definite on Ker Dg(x ), then there exists a0 ) 0 such that for

any F > a0' x is a unique global solution of a (A) and hence

a0(A*) = f(x ).

As a matter of fact, we can claim

(1 () = max ()

namely we have

Theorem D

If g is a proper Morse program having a unique global solution x

*

with the associated Lagrange multiplier A , and if we take K -g1(b),

-13-



then there exists a0 > 0 such that for any a ) o0, x is a unique global

solution of 0(A ) and

( = max a (A) w(b) = f(x

Remark

2 n-sN-iThe assumption is satisfied almost always if f e C and g £ C

Proof
L*

Since K D g-(b), we have w(b) = f(x*), hence it suffices to show

* (X ) = max 0(A), which follows from (4.1) in the next lemma.
A

Q.E.D.

Lemma 4

(a) 0 (') is a concave function of A for any a ) 0

(b) For any A £ Rm , g(xA) - b is a supergradientI ) of

0 at A, where xA is a global minimizer of 0a(A).

Proof

m(a) is trivial. (b): We will show that for any 0 E R

(4.1) 0 (W) < 0 (A) + (IJ-A) T(g(x ) - b)

By the definition of %, we have

T 02
(4.2) 0 (i) = f(x ) + I (g(x ) - b) + 2Ug(x ) - bi

(4.3) 0(A) = f(xA) + AT(g(x ) - b) + - Ig(x ) - b 2 ,

1)

Rockafellar ([131 §23)

-14-
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and

0 2
(4.4) () f(x + T (g(x) - b) + -2 lg(xl) - bl

Substituting (4.2) and (4.3) into (4.4), we obtain (4.1).

Q.E.D.

Rn Rm  Rm  Rn Rm

Let us define a function F : R x x R xR by

F(xX,y) = (Df(x)T + Dg(x) TX, g(x) - y)

We define F (x,X) as F(x,X,y). The next lemma is a key step toward our
y

sensitivity analysis of proper Morse programs.

Lemma 5 (cf. Brown/Heal/Westhoff [3])

If g is proper, then

(a) (P(y)) is a Morse program

= y C Y : = {y C Rm I g i, y, F A t}y

(b) Y is open in Rm

Proof (a) is equivalent to Theorem B.

(b): We claim that {Ylg A y} is open in e and tyig A y, F A 0} is

open in {Ylg y}. Since both proofs are similar, we omit the first proof.

So we will prove {ylg f y, F A 01 is open in {yjg A y) which is open in

Fe1. y

Suppose it is not open at y0 C {ylg A y, F A 0}. Then there exist

{Ylg Y}n,( n) E F- 1 (0) such that y n y and DF n(xn, Xn) is

y y

-15-



singular. Let K be a compact neighborhood of y0 such that K _ (yly i yi

-1
and hence Dg(x) has full rank for any x E g (K).

n g-1(
Now for sufficiently large n, x C g (K). Since g is proper and

n.
g- (K) is compact, there exists a subsequence {x 3) of {xn  such that

x 3 C g (K), x j 0 for some x0  g 1K). Since (x , y n) - (x0 ,y0 )

and g(x n J) = y , we have g(x 0 ) = yo. By g , yn we have

(4.5) An = X(xn ) : = -(Dg(xn )Dg(xn)Tj'IDg(xn )Df(xnlT .

-1j

Since A(,) is a continuous function of x on g- (K), and since x n

0n. 0 n 0 0x e K and x x , we have X = (x ). Then we obtain

n. n. n n. n.
(x IX ,y ) (x X ,y ) and 0 = F n (x 3,X + F 0(x0A) = 0

y y

0 0
By F 0 A 0, DF 0 (x , X ) is nonsingular. However we have also

n. n. n. n.

DF (x + ) DF 0(x0,0), hence DF (x A ) is nonsingular forn. 0n.
y I y y )

sufficiently large nj, which contradicts our assumption. Therefore

(ylg A y, F A 0} is open in {ylg A y).y

Q. E E.

Proposition 6 (Local Uniqueness)

Let g be a proper function. Then the number of critical points of

(P(y)), denoted #(P(y)), is finite for any y C Y, and it is a locally

constant function on the open set Y.

-16-



Proof
-1-

Let (P(y)) be a proper Morse program, then g (y) is compact and each

critical point of (P(y)) is isolated. An isolated set in a compact set is
-i -i

finite, hence #(P(y)) is finite. Let #(P(y)) = k and let x and 1 be

respectively a critical point of (P(y)) and its associated Lagrange

multiplier (i = 1,2,*.,k). By the implicit function theorem (Edwards [5] p.

417), for each i = 1,...,k; there exist neighborhoods W (y) c Y•

U (x ) c R , V (A ) c Rm , and C functions x °) + U
i wi vi

Xi() :W + such that

(x ()X (y)) = ( i

= i ii Vi Wi

(4.6) F(x,X,y) = 0 - (x,X) = (x i(y),X i(y)) on U x V x W

k

Now let us take a neighborhood W of y such that W C ) Wi  and

1 k iw1
x (W),'**,x (W) are pairwise disjoint.

Since F(x i(y),A i(y),y) = 0 for y e W, xi(y) is a critical point of

1 k(
(P(y)) for i = 1,-..,k. Since x (W),***,x (W) are pairwise disjoint,

1 k(
x (y),°..,x (y) are k distinct critical points of (P(y)). Therefore we

obtain #(P(y)) > k for y c W.

Let us show that actually equality holds. Suppose, to the contrary,
y2} £ - 2.y

there exists {y I such that y t W, y + y and #(P(y )) > k. Then there

It , 2. £X .X, 1 x 2l .. k 2..,exists [(x ,A )) such that F(x ,A ,y ) = 0 and x (x1(y£),.*.,xk(y );.

£ £
Note that x is a critical point of (P(y)) with the associated Lagrange

multiplier A

-17-



Take e > 0 so that a closed c-ball B C(Y) c W, then there exists L

91 - -1 -
such that I > L = y C B (Y). Since g is proper, g (B (y)) is compact£ -I

and 1 ; L - x c g (BC(y)). Then there exists a converging subsequence of
x£ £ *

{x } For the notational convenience we assume x + x for some

x C g (BC (y)). Since B (y) C Y, Dg(x) is of full rank for any
1 -9--1 - * -1 - x£

SC g- (BC (y)). Therefore, (x IAL E- g (BE(y)), x C g (B (y)), x + x

imply X£ + X for some X c R by (4.5). Then by the continuity of F,
• *.. * *•

we obtain F(x , ,y) - 0. This implies (x , ) = (xi,,i ) for some

j E {1,--.,k}, hence for sufficiently large 9, we obtain

F(x,,y ) 0 , (x ,l ,y ) C U x v x Wj

and

x 4{x y ),'...,xk(y ) .

This contradicts to (4.6), so completes the proof.

Q.E.D.

Note that w(y) = min f(x i(y)) for y e W, and hence we obtain

Corollary 7

If (P(y)) is a proper Morse program, then in a neighborhood of y,

w(-) is the minimum of a finite number (= #(P(y)) of C2  functions (as a

result w(.) is a locally Lipschitz function on the open set Y). Moreover,

if (P(y)) has a unique global solution, then in a neighborhoQd of y,

w(*) is a C2  function.

-18-



Proof

It is easily verified (e.g. Luenberger [11], 10.5) that

Df(x i(y)) - (y), D 2f(x i(y)) = -DX i(y) (i = 1,.'.,k)

1 2
hence f(x (o)) is in C . The fact that w(°) is locally Lipschitz on Y

follows from Clarke (4].

Q.E.D.

Remark

The differentiability of the local optimum value function was shown by

Fiacco/McCormick (6] and Fiacco [7], using the implicit function theorem. In

our proper programs, we consider the global optimum value function W(-), and

we will show in Theorem E(d), that the global optimum value function

w(u,v) = minimum{f(x) - uTx subject to g(x) = b + v}

for (P(u,v)) is C2  function of (u,v) on an open and dense set of

Rn m 2 n-m+1
xR, if fC and g e C

Now let us make a few remarks on the open set Y.

Definition (Brown/Heal/Westhoff[3])

A program (P) is called regular if F h 0.

The regularity is a generic property, namely if f and g e Cm +2  (hence

F e C m+1), then F A (u,v) for almost every (uv) C Rn x Rm  by Sard's

theorem,hence (P(u,v)) is regular for almost every (u,v) e Rn x Rm. If

-19-



f,g E Cm + 2  and F J 0, then Fy A 0 for almost every y e Rm  by virtue of

n-m-i
the parametric transversality theorem (Appendix (4)). Since g C C

this implies g & y for almost every y . Rm , summarizing the above we

obtain

Proposition 8 (Brown/Heal/Westhoff (3])

(a) If f,g e C 2  then (P(u,v)) is a regular program for almost

every (u,v) e Rnx Rm.

(b) If (P) is regular, f E C g E Cmax(m2 ' n -m+1) then Y has

full measure in R.

Corollary 9 (cf. [3])

m2
If (P) is a proper regular program, f e Cm+ , and

g C Cmax(m 2,n- m1), then Y is open and dense in FP.

our final result in this section considers the differentiability of the

global optimum value function w(.,.) for (P(u,v)).
Rn Rm Rn Rm Rn Rm

First let us define F : x xR xR m R xR by

T T
F(x,X,u,v) = (Df(x) - u + Dg(x) T, g(x) - b - v)

R n Rn Rm

and F :R( x +R xR by

F (x,A) = F(x,X,u,v)(u,v)

Then we have

L(x) Dg(x)T

(uv) Dg(x) 0

2 m 2

where L(x) = D f(x) + X iD gi(x). Therefore following exactly the same

argument as in Theorem B, we obtain

-20-
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Lemma 10

If g A b + v, then f(x) - uTx is a Morse function on g-1 (b+v) if

and only if F f 0.(u,v)

Let us denote

n m
Z = {(u,v) C R x Rml(P(u,v)) is a Morse program}

and

Z'= (uv) C Rn x RmI (P(uv)) is a Morse program

having a unique global solution

Then by Lemma 10 we have

Z ={(u,v) Rn x Rmlg , b + v, F(uv) f 0}

Note that if f e C2 and g . C n- m+ 1 , then Z has full measure in

R Rm . Because {(u,v)Ig h b + v} has full measure and

((u,v)IF(uv ) A 0} has full measure by Sard's theorem.

Following essentially the same argument as in Lemma 5 and Proposition 6,

it is easy to prove the following

Theorem E

Suppose g is a proper function. Then we have
(a) Z and Z I are open sets of Rn x Rm

(b) the number of critical points of (P(u,v)) is finite for any

(u,v) e Z, and it is locally constant on Z.

(c) w(.,.) is locally expressive as the minimum of a finite number

of C2 functions on Z.

2 n-m+ 1 2(d) if f E C and g c C then w(.,.) is a C2  function

n m
on Z which is open and dense in R x R

-21-



5. Inequality Constraints: Definition of Morse Programs

Let us consider a program

(Q):minimize{f(x) subject to g(x) (%b

and a perturbation

(Q(u,v)): minimizeif(x) - ux subject to g(x) 1% b + -

where f : R n R 1and g R n R mare of class C2 , u C R n, v e and

n > m

Let I : 1,2,**,mJO g J (x): =(g .(x)) e , b : bi c Jc: I - J

for all J I. Let us denote

Mi ={xlg (x) b J ,g.1(x) 4 b.

3M ': = fxlg Cx) b b x .

f or all J c I and i c 1. For the notational convenience, we denote Mi:

Mji if i e J and X i:= Mii ax. = 3M' if J = '

Note that if J cJ then MJ' = 314 Mi.

We will reduce the inequality case to some equalities and one inequality

case.

Definition. A program (Q) is called a Morse program if (Q) satisfies

(M42) AJx bi and g~ J ax. A bJi for all nonempty J c I and

(M43) f is a Morse function on Mj~i and 3 M il for all J c I

and i e I

(M) f 1M J,1  has no critical points on 3M J 1  for all J c I and

-22-



Remark

By (Ml), Xi  {xig.(x) ' b} is n-dimensional manifold with boundary
1 1

-1
Ai = gi (b ) (Appendix (10)). Then (M2) implies that M j i = Mi 3  X i  is

(n - 3l1)-dimensional manifold with boundary aMj i = M r aXi = M Jril

(Appendix (11)). These manifolds of different dimensions cover the feasible

region of (Q), and by (M3) we will restrict the objective function f on each

manifold when we argue the optimality conditions of (Q). In the next section

(Proposition 15), we will show that assuming (Ml) and (M2), (M4) implies the

strict complementary slackness condition.

Definition. x is a critical point of (Q) if g(x) C b an, x is a critical

point of Mj(x) where J(x): = {ilgi(x) = b }"

The next theorem states the important properties of a Morse program,

which is analogous to Theorem A.

Theorem F. If (Q) is a Morse program and x is a critical point of (Q) with

J = J(x), then

(a) Dgj(x) has full rank.

(b)1) there exists a unique C £ Rm such that Df(x)T

+ Dg(x)Tl = 0 and X 0 iff i E J.

m

(c) L(x) = D2f(x) + A )iD2 gi(x) induces an isomorphism on
i=1

TxMJ •

(d) On TxMJ , L(x) is positive definite iff x is a local

minimum; negative definite iff x is a local maximum;

indefinite iff x is a saddle point on Mi.

1)

> 0 for all j , J  if x is a local minimum, \ < 0 for all j J

if x is a local maximum (see Luenberger [11, 10.6).
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Proof. (a) and (c) follow from (Ml), (M2) and Lemma 3. (b) follows from

Lemma 1 and (M4) (see Proposition 15). Since a local minimum (or maximum)

point of (Q) is also a local minimum (or maximum) point of f on Mj, (d)

follows from Theorem A(d).

Q.E.D.

6. Inequality Constraints: Generic Properties of Morse Programs

2 n
We will show that if f 6 C and g c C , then for almost every fixed

m n
v e R , (Q(u,v)) is a Morse program for almost every u C R . First of all

we consider the genericity of properties (MI) - (M3).

Lemma 11. If g . Cn , then (Ml) and (M2) hold for almost every b £ Rm .

Proof. We follow the proof of Spingarn/Rockafellar [17], Theorem 1. By

Sard's theorem, if g C Cn  then the set of critical valaes of gi is of

measure zero in R ii for i = 1•...•m. Then T. = b Rmjb. is a1 1

critical value of gi} is of measure zero in Rm (i = 1,...,m), because

every (m-IiI)-dimensional horizontal slice of Ti  is of measure zero as a

subset of R'', hence Ti  itself must have measure zero by Fubini's theorem
1 m

(Appendix (3)). Hence T = U T. has measure zero. By Sard's theorem with
i=1

n mboundary (Appendix (2)), if g 6 C and b £ R - T (hence Xi  is n-

dimensional manifold with boundary aXi ), then for any nonempty J _ I and

any i J, the set of critical values of gjXi or is of measure

zero in RIJ I. So, again, by Fubini's theorem (Appendix (3)),

S b E - Tlb is a critical value of),
SJi • = m  or

1 1

has measure zero in Rm  for all nonempty J c I and all i J. Then

S J SJ 'i has measure zero in Rm .

J'i

Q.E.D.
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Let us take b E S = (b C Rmi b satisfies (Ml) and (M2)). Then for any

J c I and i C I, f(x) - uTx is a Morse function on Mji and Mj, i for
almost every u E Rn by Appendix (6). Therefore we obtain

2 nmCorollary 12. If f C C and g C C , then for almost every v Rm ,

n
(Q(u,v)) satisfies (Ml), (M2) and (M3) for almost every u £ R

The genericity of the strict complementary slackness condition is much more

complicated and we need some preliminary results.

Proposition 13

Let M be an m-dimensional Cr manifold in Rn with nonempty boundary

3M and let f : M + R1 be a Cr map. Then for almost every u E Rn , Cr

map f(x) - uTx defined on M has no critical point on 3M.

Proof1 ) x c M is a critical point of f(x) - uTx iff Df(x)T - u I T M iff

u E Df(x)T + T M (T M is the orthogonal complement of TxM in R n). Letx x

E = {(x,u) C 3M x Rniu C Df(x)T + T M }. Then E is (n-i)-dimensional
x

r-1 n
C submanifold of aM x R . Let us prove this fact. For any given
x 3M there exists an open set U of R and a submersion g : U n-R

such that U = U g (0) and x e DU M= n U (Appendix (7)). Let

3U x Rn-m + aM x Rn be O(x,y) = (x, Df(x)T + Dg(x)Ty); (0,V) be a

local parametrization of 3M at x such that x = (v), v C V C Rm , and

O(v) c 3U; and : V x Rn - m . aM x Rn be (v,y) = f((v), y). Then

C Cr- 1 and for any (v,y) C V x Rn - m we have

D (v,y) = fDO(v) 0 T• Dg(o(,7)) T

1)

This line of argument was suggested by W. G. Dwyer.
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T

Since Df(v) and Dg(f(v)) is 1-1, D*(v,y) is 1-1 (i.e. * is an

immersion) hence by the definition 0 is an immersion. Let E(aU) =

((x,u) E 3U x Rnlu E Df(x)T + T M C 3M Rn, then since T M1 = Im Dg(x)T
x - x

: 3u x Rn-m + E(aU) is bijective and proper, hence 0 is an embedding of

n-r n r- 1
DU x Rn-  into 3M x R . Consequently E(au) is a C manifold

(Appendix (8)) parametrized by 0, with dimension - dim au + n - m = m - 1 +

n - m = n - 1. Since every point of E has such a neighborhood, E is a

Cr - 1 manifold. (cf. Guillemin/Pollack [8], normal bundle on page 71.) Let

W aM X Rn Rn be a projection map. Then since E is (n-1)-dimensional,

lr(E) c Rn has measure zero in Rn  (Appendix (9)).

Since n(E) = {u e Rnlu C Df(x)T + T M for some x e aM1 has measurex

zero, for almost every u 6 R7 (i.e., u 4 W(E)) every x c aM is not a

critical point of f(x) - uTx on M. This completes the proof.

Q.E.D.
Rn m Rn  I

Lemma 14. Let g : + Rm , h R R ; b C Rm , c £ ; n > m + 1;

X = {xlh(x) < ci, and aX = h- 1(c). Suppose h , c, then we have

(a) If gX b, g 1ax A b then M z = g-1 (b) n X is (n-m)-

dimension4l manifold with boundary aM1 g-(b) n h-0(c),

and T 3M = Ker Dg(x) n Ker Dh(x).

(b) gla X + b iff (g,h) A (b,c).

Proof. Since h A c, X is n-dimensional manifold with boundary

a h-1(
X h Cc) by Appendix (10).

(a): By Appendix (11), M is (n-m)-dimensional manifold with

boundary aM 1(b) n h- 1(c). glax b and T3x 3

Ker Dh(X) imply T 3M = Ker Dg(x) n Ker Dh(x) by Appendixx

(12).
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(b): (only if): Since dim TaM = n-m-1, D(x) Rm xR

is onto for any x £ 3M, hence (g,h) A (bc).

(if): Let x e (g 1ax)-1(b) i.e. x e (g,h)- 1(b,c). We will

show that Dg(x) IT aX , T aX + Rm is onto. Since Tx 3X =
I IT ax x xxi Ker Dh(x), Ker(Dg(x) ) = Ker Dg(x) n Ker Dh(x). However

dim(Ker Dg(x) n Ker Dh(x)) n-m-1 because (g,h) A (b,c),

and since dim T 3X = n-1, we obtain Dg(x) Ix is onto.

Hence glax A b.

Q.E.D.

Theorem G. (Strict Complementary Slackness)

Consider a nonlinear programming problem

minimize (f(x) subject to g(x) = b, h(x) 4 c}
Rn 1 Rn m Rn 1

where f : R + R , g : R + Rm , h : R + R ; f,g,h e C ; n ) m+1.
h~-1

Let X : -{xlh(x) 4 c}, ax = 1 (c), M : = g-1 (b) n X, and
-1

aM : g (b) n 3X. Suppose h A c, gIAX  b and glaxf b. Let x be a

critical point of f lam* Then the Lagrange multiplier p associated with

the constraint h(x) < c is nonzero if and only if x is not a critical

point of fIM"

Proof. By Lemma 14(a), M is (n-m)-dimensional manifold with boundary 3M.

Note that x is a critical point of fjam if and only if Df(x) T *am

We have T .M I  Im(Dg(x )T , Dh(x )T ) because (g,h) 1 (b,c) by Lemma
x 1 . m

14(b), hence there exists a unique (X ,i ) e R x such that

•T x*T* hx*T*(6.1) Df(x T + Dg(x + * = 0

-27-
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* *)T
If x is not a critical point of f1M' then Df(x*) T T *M = Im Dg(x T

x
and hence in (6.1), p + 0. On the other hand if x is a critical point of

fIM' then by the uniqueness of (X ,p ) in (6.1), p 0.

Q.E.U.

This theorem provides a geometric interpretation of the strict

complementary slackness, namely the degenerate Lagrange multiplier occurs if

and only if the critical point of f on the boundary of the manifold M is

also a critcal point of rjM" Let us illustrate this fact by an example.

Example (Avriel (2], Example 3.1.4)

Consider the following program:

minimize f(x) = x

subject to g(x) (x1-3)
2 + (x2 -2)

2 
- 13 = 0

h(x) = (x -4) 2 + x - 16 < 01 2

x2

x1 0
0

-2 6.4

-2 x 3.2
-3 3+a l3
- 2

-- 3

g(x) 0

h(x) 0

-28-
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It is easily verified that g h 0, h A 0. g1 h-1, 0 is obvious because
h (0)

{xlg(x) = 0) meets {xlh(x) = 01 transversally. Hence all assumptions in

Theorem G are satisfied.

-1 -2
Let M = {xfg(x) = 0, h(x) 4 01, then aM [x ,x 2. Since every

point is a critical point of any function defined on 0-dimensional manifold,

-1 -2
x and x are critical points of f lm* Since Df(x) = (1,0) for any

n -3
x C R , rIM has only one critical point x which is not an element of

3M. Therefore by Theorem G, the associated Lagrange multiplier of the

-1 -2 -1 -2
constraint h(x) 4 0, V (or 1 ) at x (or x ) is nonzero.

Now we can show that (M4) implies the strict complementary slackness

condition.

Proposition 15

Suppose (Q) satisfies (Ml), (M2) and (M4). Then every Lagrange

multiplier associated with an active constraint is nonzero (i.e. strict

complementarX slackness condition holds).

Proof

Let x be a critical point of (Q) such that J = J(x). Then by (M) and

(M2), there exists a unique T E Rm  such that T = 0 and
c

Df(x)T + X X.Dgj(x) = 0
jeJ

To show + 1 0 for all j c J, pick any j C J. By (Ml) and (M2), we haveJ

g. A bj, gJ-{J} IXj bJ_[j}, gJ-lJ}lax J-{j}"
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Since x is a critical point of (Q), this means x is a critcal point of

fIMj and M =aM By (M4), x is not a critical point of

f . Hence by Theorem G, the Lagrange multiplier . associat-d with

the constraint g.(x) 4 b is nonzero.

Q.E.D.

By Proposition 13, the genericity of (M4) is obtained and hence we have

Theorem H (cf. Spingarn/Rockafellar (17], Corollary)

2 nm
If f E C and g c C , then for almost every fixed v e Rm , (Q(u,v))

is a Morse program having at most one global solution for almost every

n
uCR

Proof

By Araujo/Mascolell ([1]), we have also

Fix any v E Rm , then for almost every u e R (Q(u,v)) has at most

one global solution.

Use Corollary 12, and Proposition 13.

Q.E.D.
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Appendix

(Guillemin/Pollack (8], Hirsch (10])

(1) Morse lemma

Let p C M be a nondegenerate critical point of f M * R Then there

is a local coordinate system (xl,...,xm) in a neighborhood U of p such

that

2 2 2 2
f = f(p) - x 2 . 2 + x 2 + ... + x m

1 A X+1 m

for some 0 4 A 4 m.

(2) Sard's theorem (with boundary)

Let f : X + Y be a C map of a C manifold X with boundary 3X

into a boundaryless CY manifold Y. Then almost every y C Y is a regular

value of both f : X + Y and fI x : aX + Y if y > max(0, dim X -

dim Y).

(3) Fubini's theorem

Let A c Rn x Rm be a measurable set such that for almost every

m RnI(uv)

v  u R Rv A} has measure zero in R . Then A has

measure zero in Rn x Rm

(4) Parametric transversality theorem

Let F : X x V + Y be a C map of C manifolds and A be any C

submanifold of Y. If F $ A and y > max(0, dim X - dim Y) then Fv A

for almost every v C V where Fv(X) = F(x,v) for x e X.

(5) Let f : X + Y be a C map such that f f Z for a CY  submanifold

Z of Y, then f 1 (Z) is a C' submanifold of X and dim f-1(Z) -
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dim X - dim Y + dim Z. As a special case if f y for some y L Y, then

(-Jy) is a C submanifold of X and dim f- 1(y) = dim X - dim Y.

1 2 2 n
(b) Let f X + R be a C map of a C manifold X in R . Then for

almost every u E R
n  

the function f(x) - u Tx is a Morse function on X.

(7) Let X R n be m-dimensional manifold with boundary dX. Then for uach

point x c 3X, there exists an open set U of Rn and a submersion

- n-ni- -1
U * R such that U 

=  
U U = q (0) and x c U 

= dX U.

(8) An embedding f : X Y maps X differomorphically onto a submanifolj

of Y.

(9) Let X, Y be manifolds with dim X < dim Y. If f : X - Y is a C

map then f(X) has measure zero in Y.

1 Y 1
(10) Let f X + R be a C map such that f ' c for some c c R Thf(n

txlf(x) r cl is a C
Y  

submanifold of X with boundary f-1(c).

(11) Let f X + Y be a C map of a C manifold X with boundary ,X

onto a boundaryless CI manifold Y. If f Z, fI JX Z for a boundaryieos

submanifold Z of Y, then f"
1
(Z) is a C submanifold of X witri

boundary 3f- (Z) = f 1(Z) 3X and dim f-
1
(Z) = dim X - dim Y + dim Z.

(12) Let X, Z be submanifolds of Y such that X Z. Ther X Z is

again a submanifold of Y, dim(X ri Z) = dim X + dim Z - dim Y dnd T (Xx

TxX Tx Z for any x £ X Z.

More generally, let f X + Y be a map transversal to a -kibmanifon1d

Z in Y. Then W = f-1 (Z) is a submanifold of X and TxW = Ker 'fx 4 ;e

Df x : TxX + Tf(x) Y.
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